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Systematic analyses of human proteins show that neural and immune
system-specific, and therefore, relatively “modern” proteins have a ten-
dency for repetitive use of amino acids at a local scale (~1-20 residues),
while ancient proteins (human homologues of Escherichia coli proteins) do
not. Those protein subsegments which are unique based on homology
search account for the repetitiveness. Simulation shows that such repeti-
tiveness can be maintained by frequent duplication on a very short scale
(one to two codons) in the presence of substitutive point mutation, while
the latter tends to mitigate the repetitiveness. DNA analyses also show
the presence of cryptic (i.e. “out of the codon frame’”) repetitiveness,
which cannot fully be explained by features in protein sequences. Simu-
lative modification of the amino acid sequences of immune system-
specific proteins estimate that 2.4 duplication events occur during the
period equivalent to ten events of substitution mutation. It is also
suggested that the repetitiveness leads to longitudinal unevenness within
a given peptide domain. Those peptide motifs which contain similarly
charged residues are likely to be generated more frequently in the pre-
sence of the tendency for repetitiveness than in its absence. Therefore, the
neutral propensity of DNA for duplication, which can also tend to gener-
ate repetitiveness in amino acid sequences, seems to be manifested pri-
marily when the constraints on amino acid sequences are relatively
weak, and yet may be positively contributing to generation of uneven-
ness in modern proteins.
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Introduction

1991) . We have shown that the occurrence of
arginine (R) and lysine (K) residues has apparent

Proteins have been assumed generally to evolve
depending on their fitness and neutral drifts. On
the other hand, it has been suggested that the pro-
pensities of genomes have significant influence on
the “neutral” aspects and therefore on primary
sequence of proteins (Nei, 1987; Bernardi, 1995).
Even before the genetic codes were determined,
Sueoka (1961) showed that there is a correlation
between the nucleotide composition of genomic
DNA and the amino acid composition of the pro-
teins of the same organism. It has been demon-
strated that eukaryote genomes have global scale
unevenness which is referred to as isochore
(Bernardi, 1995; Ikemura & Aota, 1988), and of
note, it has been reported that genes belonging to
different types of isochore encode proteins with
different amino acid composition (D’Onofrio et al.,
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arbitrariness based on the finding that the R versus
K ratio correlates with local (~20bp) G+ C
content of the corresponding gene (Nishizawa
& Nishizawa, 1998). In fact, for the human gene,
R/(R 4 K) equals 66 % on average when the corre-
sponding genes are in the context of a DNA whose
GC% =70 ~ 80 %, (and 37 % when associated with
the DNA of GC% = 30 ~ 40 %).

Although the origin of such global and local
scale unevenness in a genome remains unclear,
they may be generated, at least in part, by the
duplication of DNA segments with various
lengths. It is possible that duplication events of
~100 kb segments would affect the structure of an
isochore, while duplications of 3-6 bp segments
may cause local unevenness. The previous reports
have suggested that the various scales of dupli-
cation is the fundamental process in evolution
(Ohno, 1984, 1987; Doolittle, 1989). Tautz et al.
(1986) also showed that a slippage-like mechanism
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is working for the generation of variation. Related
to this study, microsatellite DNA has recently
attracted much attention because of its potential
usefulness for evolutionary and population gen-
etics and medical diagnosis (for examples, see
Weber & Wong, 1993; Goldstein et al., 1995;
Rubinsztein et al., 1995, Kimmel et al., 1996). In
general, such local repetitive motifs have been ana-
lyzed as a marker of evolution. It is not very clear
how ubiquitously such phenomenon occurs over
the whole genome. Our interest lies in how fre-
quently the local scale tandem gene duplication
occurs, particularly in the coding regions, and how
it effects the protein sequences and structures.

Here, we perform the cumulative analysis of
repetitiveness in amino acid occurrence in human
proteins. We demonstrate that the iterative use of
the same type of amino acid is a general feature for
tissue-specific proteins. The frequency of gene
duplication on scales of various lengths which can
keep the repetitiveness at the poised state was esti-
mated. Based on the simulative analysis, we show
that such local scale duplication enhances the
chance of occurrence of densely charged peptide
segments, and, therefore, motifs such as heparin
binding motifs and G-protein activating motifs,
suggesting that repetitiveness enhances the chance
for protein interaction occurrence.

Results and Discussion

Local repetitiveness in amino acid occurrence
in human proteins

Our previous findings concerning the usage of
amino acids R and K in correlation with the G + C
content of the corresponding genome DNA, raised
the possibility that local unevenness of genome
DNA structure may be related to the tendency for
repetitiveness of the genome (Nishizawa &
Nishizawa, 1998). It has also been reported that
eukaryotes, but not the prokaryote genome, have a
tendency for repetitiveness (Tautz et al., 1986). We
performed a cumulative analysis on yeast proteins
and found that yeast amino acid sequences have
repetitiveness (K.N., unpublished data). In the pre-
sent study, we focus on human proteins, because
of the relative ease in obtaining tissue-specific
(thus, modern) and ancient protein sequences
(Doolittle et al., 1986). Thus, human protein files
were compiled from SwissProt, and cumulative
analyses regarding the amino acid occurrence were
performed. Figure 1 shows the frequency of each
amino acid type at position +1 (left) and the fre-
quency averaged over positions +1,..., + 10 from
different types of residues (right). As will be
defined in the Methods and Algorithms, Fy
denotes the frequency of amino acid X over all
proteins concerned. Fyy denotes the frequency of X
in the proximity of amino acid Y. (X and Y are any
of the 20 amino acid residues.) Figure 1 shows the
percentage change from Fy, i.e. 100( Fxy — Fx)/Fx.
One primary feature is that for most of the 20 resi-

dues, there is a tendency of recurrence or “self-
clustering”. In fact, all the scores on the diagonal
are positive, indicating that, near amino acid X, X
itself tends to occur more frequently than average.
Such tendency is especially strong for Q, E, S, H,
R, K, A, P, G, Y and W residues. For C (cysteine), a
more detailed analysis showed that Fc(i)
(cysteine-cysteine) and Fyc(i) (histidine-cysteine)
profiles have clear peaks, likely due to the presence
of many zinc finger proteins in the protein set (not
shown). The tendency for recurrence appears to be
modest for some amino acid residues, including T,
Mand V.

Figure 2(a) shows (1/100)(Zyx Fxx(i), which
means the frequency of the amino acid recurrence,
which were averaged over 20 amino acid types
after weighting their frequency in the analyzed
proteins, as described in Methods and Algorithms.
As expected, the primary trend is that the same
type amino acids tend to recur in close proximity
at higher frequency, with the frequency gradually
decreasing as the distance from the position
increases. There are three clear peaks at 28, 56, and
84. Further analyses revealed that these peaks are
created by zinc finger motifs: when those files
whose description annotates on “’zinc finger” were
eliminated, the peaks were not observed
(Figure 2(b)), while those files annotated as such
gave rise to the peaks as shown in Figure 2(a).

However, it should be emphasized that even the
protein set without zinc finger proteins shows a
smooth curve, implying the tendency of amino
acid recurrence at a local scale (1~ 20 residues)
(Figure 2(b)). Fxx(i) (recurrence profiles) of Q, E, S,
H, R, K, A and P (Figure 3) and also of G, Y and L
(not shown) for non-zinc finger proteins indicate
the general tendency for repetitiveness. We con-
clude that human proteins have a general tendency
for repetitive use of amino acids. Such tendency is
also the case for other mammalian proteins and in
Saccharomyces cerevisiae and Caenorhabditis elegans
(not shown).

Strong repetitiveness in modern proteins

Given the previous findings on genomic instabil-
ity mediated by gene duplication (Ohno, 1984,
1987; Weber & Wong, 1993; Goldstein et al., 1995;
Rubinstein et al., 1995; Kimmel et al., 1996), it
seems possible that the gene duplication on a very
local scale is a factor generating the repetitiveness
shown above. If it is so, then the tendency for repe-
titiveness may differ among proteins, because in
general the modern proteins are under weak con-
straints, while the ancient proteins are under
strong constraints so only limited patterns of
mutation are accepted (Doolittle et al., 1986). From
the original human protein sets, we chose those
proteins which can be categorized into either of the
following three subgroups, (A) neural system-
specific, (B) immune system-specific, and (C) the
proteins whose homologues are known in Escheri-
chia coli. The averaged frequency of recurrence (1/
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Figure 1. Amino acid occurrence near different types of amino acids: left, at the +1 position; right, over
+1,..., 4+ 10 positions (averaged). The percentage change from Fy, that is, 100(Fyy — Fx)/Fx, is shown with the color

indicated.

100)(Zx Fxx(i)) for each category is shown in
Figure 4. Neural and immune system-specific pro-
teins have higher degree of repetitiveness in amino
acid sequences compared with “ancient” proteins.
These observations seem consistent with our idea
that the degree of repetitiveness reciprocally corre-
lates with the strength of structural and functional
constraints on protein sequences. One notable fea-
ture of the neural proteins, in particular, is that
they have a repetitiveness score ( ~1.15 or above)
significantly higher than 1.0 even at far distal
locations. Although we have not investigated the
cause as yet, one possibility may be that amino
acid composition is different among the neural pro-
teins, because some (e.g. ion channels) contain
many hydrophobic residues, while some are
known to be very acidic (e.g. GAP-43, neurofila-
ments etc.). While we believe this is an important
issue, we would like to focus on more local repeti-
tiveness in the current study. The genes for the
neural proteins have a high G4 C content (see
below). However, it is presently unclear to what
extent the amino acid repetitiveness at this “inter-
mediate distance (50-100 residues)” is resulting
from such a biased composition in DNA.

Mitigated repetitiveness in subsegments
homologous with yeast proteins

These findings suggest the reciprocal relation-
ship between the “constraints” on the protein
sequences and the “repetitiveness”. To further
address this point, we also tested the human pro-

teins for which yeast (S. cerevisiae) but not E. coli
has the homologue. Because the overall “hom-
ology” between two proteins generally depends on
the contribution from subsegments with different
degrees of homology, we analyzed the repetitive-
ness of the two distinct populations of the subseg-
ments derived from an identical protein set, with
different degree of homology: those subsegments
which can be aligned with the BLAST score
(e-value) < e-40 (“homologous subsegments’), and
those subsegments for which the BLAST analysis
did not show the score smaller than e-40 (“non-
homologous subsegments”). (The names of the
files and the positions of the homologous subseg-
ments are shown in Supplementary Material). As
shown in Figure 5, while the non-homologous sub-
segments have a high degree of repetitiveness, the
homologous subsegments have only a modest level
of repetitiveness.

We also found that those yeast proteins for
which E. coli has a homologue exhibit very weak
repetitiveness, but those unique to yeast show
strong repetitiveness (unpublished observations).
Based on these results, we surmise that the ten-
dency of repetitiveness of genome is the factor that
causes the repetitive amino acid use, and that
when the constraints on proteins are weak, such
tendency becomes clear.

Repetitiveness in DNA sequences

Although the results presented above were
obtained solely from the study on amino acid
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Figure 2. (a) Normalized frequency of recurrent use of identical amino acids in human proteins. To simplify the
presentation, the profiles for 20 amino acid types obtained were combined as shown by (1/100)(Xx Fxx(i). (b) Nor-
malized frequency analyzed as in (a), but on the protein set from which zinc finger proteins were removed.

sequences, analyses of DNA sequences could also  For example, the nine nucleotide sequence GAT
be informative. Here, let us classify the repetitive-  AAC GAC (encoding amino acid residues DND)
ness in DNA sequences into two categories,  have recurrent dinucleotide “GA” at the +6 inter-

namely cryptic and non-cryptic (or “3n”) types.  val, but this recurrence is not cryptic because it is
Q E S H
1.7 ! 1.7 1.7 1.7
L6 1.6 1.6 1.6

on
m——————
L b
v i
-

=
a -
e

p o ol
= " 2 i
12 ™M 12 gl 12 12 "
v Wi 2 M W i A - T ]
— M WA .
= 11 11 1 11
9]
S 10 10 1.0 10
h 0 10 20 30 40 50 60 70 80 90 100 0 186 20 30 40 50 60 70 80 90 100 ¢ 10 26 30 40 50 60 70 80 90 106 0 10 20 30 40 S0 60 70 80 90 100
= R K A P
QN) L7 17 1.7 17
— 16 f
16 16 . 16
s |
E {
& 15 15 : 1.5 15 k
g 14 1.4 1\1 14 14
1.3\ 13 \'v . . 13 ’X 13
12 \!‘- 12 W ‘U"'h "y 12 \ 12 B W
11 wh‘“n"‘-h-_- TPy i " 11 ™~ A P 11
Vi WWW\}
: : : 1.0 — 1.6
10070 20 30 40 %0 60 70 80 % 100 100710 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 66 70 86 90 100

residue interval

Figure 3. Recurrent use of individual amino acid types. Fxx(i)/Fx is shown for indicated amino acid types. Analysis
was performed on no-zinc finger human proteins.



Repetitive Use of Amino Acids

941

A B

immune C

neural ancient
14 — : 1.4 1.4
1.3 1.311 1.3
>
2
g 12 l ’n 1.2 1.2
= ” I‘!
)
&
=
@
N
E 11
s Y
1=
=]
=
1.0 1.0

0.9
0 10 20 30 40 50 60 70 80 90 100

residue interval

0.9
0 10 20 30 40 50 60 70 80 90 1040
residue interval

0.9 :
0 10 20 30 40 50 60 70 80 90 100

residue interval

Figure 4. Recurrent use of identical amino acids in classified human proteins. The combined repetitiveness profiles
(1/100)(2x Fxx(i)) are shown, as in Figure 1. (a) Neural system specific protein (b) immune system-specific proteins;
and (c) those human proteins for which E. coli has homologue(s).

directly linked to the repetitiveness in the amino
acid sequence encoded. In fact, it has previously
shown that coding DNA sequences tend to give
rise to peaks at 3n (3, 6, 9...) positions (Tsonis et
al., 1991). The other type is “cryptic” repetitiveness:
for example, in the sequence GAT AAG ACC
(encoding DKT), the dinucleotide GA recurs at +5
interval, so this repetitiveness is cryptic and not
directly linked to that of amino acid. (Of course,
there should be some constraints from protein
sequences: in the above example, the second GA
contains an A residue as the first nucleotide of the
codon ACC and is likely to be influenced by the
selection pressure on the encoded amino acid.)
One reasonable approach here is to perform
“cumulative” analyses to examine if such cryptic
repetitiveness is present on a local scale as found
in amino acid sequences.

Hence, we performed the analyses of repetitive-
ness of dinucleotide segments at 3n (3, 6, 9...) and
non-3n intervals (1, 2, 4, 5, 7...), using the scoring
method described in Methods and Algorithms. The
repetitiveness at 3n intervals of the cDNA
sequences for the modern (neural and immune)
proteins was higher than that of the cDNA
sequences for the ancient proteins (Figure 6(a), cir-
cles with a score above ~0.15). However, let us
emphasize the presence of repetitiveness at two
different scales; the local repetitiveness (at 1-50 nt
intervals) and the more global correlation (affecting
the height of the profile curve at 100-300 nt inter-
vals), which we refer to as the intermediate scale

repetitiveness. It is clear here that the cDNA
sequences for the modern proteins have a higher
level of intermediate scale repetitiveness, compared
with the cDNAs for ancient proteins, in both terms
of cryptic (<0.1) and non-cryptic (>0.15) repetitive-
ness. Regarding the local scale 3n repetitiveness, it
appears that the difference between the modern
and ancient sequences are small, compared with
the difference in amino acid repetitiveness (cf.
Figure 4). This may be due to the freedom allowed
to the third position of codons, which may allow
some local repetitiveness in the ancient genes as
well.

The modern cDNA sequences also have cryptic
(non-3n) repetitiveness (the filled circles below 0.1
in Figure 6(a)), which is stronger locally, with the
scores for the proximal intervals being significantly
higher than the average score for 100-300 intervals
(see also the legend to Figure 6). Such tendency
was weak but statistically significant for the cDNA
sequences for the ancient proteins (see the open cir-
cles below 0.1). For the ancient proteins, the aver-
age of the scores at the intervals of 2-30 nt was
—0.0114 and significantly higher than the —0.0254
values for the average at 100-300 nt intervals (with
P <0.01, t-test). We suggest that such cryptic repe-
titiveness in modern cDNA sequences is largely
not linked to any features in amino acid sequences
per se, because such repetitiveness was weak in the
artificial DNA sequences whose codons were
shuffled such that they encode the same proteins
and have the same codon composition as that
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Figure 5. Recurrent use of identical amino acids in
human protein subsegments classified based on the
BLAST search against yeast proteins. The combined
repetitiveness profiles (1/100)(Xx Fxx(i)) are shown.
Filled circle, homologous subsegments; open circle,
“non-homologous subsegments”.

found in the original protein (cDNA) set.
(Figure 6(b), triangles with scores below 0.1 for an
example of codon shuffling, see the legend to
Figure 6). Therefore, coding DNA sequences seem
to have repetitiveness as their own propensity.
This result is consistent with the idea that such
propensity of genome DNA sequences is involved
in and possibly contributing to repetitiveness in
protein sequences.

One interesting feature in Figure 6(b) is that the
intermediate scale 31 repetitiveness was consider-
ably mitigated in the shuffled (artificial) sequences,
as shown by the downward shift of the profile
curve. A similar mitigation was observed for both
the modern and the ancient genes (Figure 6(b) and
data not shown). Intriguingly, when the codon
shuffling was performed within each cDNA
sequence, such mitigation was not clear (data
not shown). This finding indicates that codon
usage is similar “within the gene” but different
“between the genes”. This finding seems relevant
to the previous findings regarding isochore (see
Introduction).

Figure 6(a) shows that the cDNA sequences for
the neural proteins have a higher level correlation
(both 31 and cryptic) at the intermediate scale
(~100-300 nt) than those for the ancient proteins.
We surmise that the correlation at this scale is
partly because of the biased nucleotide compo-
sition of the neural genes. In fact, the G + C con-

tent at the third position of codons are 63.2% for
the neural and 55.1 % for the ancient genes.

At present, genomic sequences for the proteins
concerned are largely unavailable. One important
thing we did not take into account in the above
analyses was the presence of introns. While our
preliminary simulation using the introns with
representative lengths suggests that the presence of
exon-intron boundaries do not considerably affect
the local repetitiveness (< ~30 nt, with influence of
<2% changes in the score), we acknowledge that
the intermediate scale repetitiveness should be
regarded as an ““under-estimation” of longitudinal
correlation due to the disruption of correlation by
introns. Although we believe that the consistency
regarding the levels of repetitiveness (or corre-
lation) for each cDNA set (Figure 6(a)) is note-
worthy, more detailed analyses on genomic
sequences are necessary in the future for more rig-
orous evaluation of the DNA repetitiveness.

Random artificial sequences and simulative
duplications of segments

The precise cause of the local repetitiveness in
tissue-specific proteins is unclear. Yet, it seems
worthwhile to assume that gene duplication on a
local scale is the major factor, and using artificial
amino acid sequences, to estimate the frequency of
duplications that could maintain the repetitiveness
in the presence of point mutations. Note that ran-
dom substitutive mutations tend to mitigate the
repetitiveness. It seems also important to know
how often very short scale duplications in contrast
to long scale ones are likely to occur.

Hence, we generated artificial amino acid
sequences that have realistic repetitiveness. As the
first step, original artificial sequences, whose com-
position of amino acids is identical with that of
real proteins (of the neural and immune set), were
generated with the use of random number genera-
tor. Such sequences are naturally without any
observable level of repetitiveness (Figure 7(a) and
(b), broken lines). Repetitiveness was introduced
into the original sequences using the duplication
method to obtain the realistic repetitiveness (see
Methods and Algorithms). The resultant repetitive-
ness is also shown (Figure 7(a) and (b)). To save
space, the numbers of duplications introduced are
partly shown in the legend to Figure 7. Although
in Figure 7 repetitiveness of each protein set was
mimicked without distinguishing 20 amino acid
residues, we also found that individual simulation
is possible, where repetitiveness with respect to
individual amino acid types was mimicked (data
not shown).

Simulation to maintain the repetitiveness in
the presence of point mutations

Starting from the sequences in which repetitive-
ness had been introduced with the duplication
method, we next estimated the relative frequency of
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Figure 6. Repetitiveness in cDNA sequences. Repetitiveness at > + 2 intervals is shown. (a) Repetitiveness at 3n
(multiples of 3) nt intervals and non-3n intervals in the cDNA sequences for the modern proteins (=neural + immune,
filled circles) and the ancient proteins (open circles) as analyzed by dinucleotide-scanning method. The points above
0.15 represent the 3n (non-cryptic) intervals. (b) Repetitiveness (31 and non-3n) in the cDNA in the codon-shuffled
cDNA sequences (shown with triangles), which encode the same protein sequences and have the same codon fre-
quency and nucletide compositions as those of the real cDNA sequences for modern proteins. For example, the
“codon shuffling” in the set containing two cDNA sequences 1, CAG CAG CCG CCG (encoding QQPP) and 2, ATG
CAA CAA CCA (encoding MQQP) may result in 1, CAG CAA CCG CCA (still encoding QQPP) and 2/, ATG CAG
CAA CCG (still MQQP), where the total codon composition was unchaged. Result for the cDNA for the modern pro-
teins is also shown with filled circles. For the cryptic repetitiveness in the cDNA for the modern proteins, the average
(£5.D.) over (+2)-(+30) positions was 0.0297(+0.017) and that over (4+100)-(+-300) was 0.0145(£0.0077). These two
averages are significantly different (t-test, P < 0.0005), implying that the repetitiveness is high at the local scale. For
the shuffled cDNA sequences, the corresponding values are —0.00434(40.012) and —0.01325(+0.00548). The statistical
difference between them is less significant than that for the modern cDNA (t-test, 0.001 < P < 0.01).

duplication of various lengths that can maintain the  cations per 10° residue sequence are needed to bal-
repetitiveness in the presence of point mutations.  ance against one PAM mutation. As expected,
First, we introduced point mutations according to  most of the duplications are those of short (one to
the PAM (accepted point mutations) matrix  two codons) fragments. Similarly, the repetitive-
(Dayhoff et al., 1978). Note that “one PAM” rep- ness of immune system proteins appears to be
resents one amino acid substitution per 100 resi-  maintained by 2.4 x 10° duplication events per 10°
dues. Random point mutations mitigate the  residues during the time period of one PAM. It is
repetitiveness and the repetitiveness profile tends to ~ suggested that, compared with the case of neural
be flattened out (Figure 7(c)). Even the mutation of =~ system proteins, more short scale duplications and
10PAM causes a ~15-20 % reduction of overall repe-  less long scale duplications are occurring for
titiveness score. This seems noteworthy, because = immune system proteins. In theory, there are two
mutation rates in real proteins are fairly rapid: even  types of duplications: (A) duplication accompanied

cytochrome oxidase c2, an example of slowly evol- by concomitant elongation as represented by x;, x,,
ving protein, has a 10 % difference in its amino acid = x,, x5, x4, generated from x;, x,, x3, X, (where x;
sequence between human and pig (Nei, 1987). (i=1,...,4) is any of 20 amino acid residues, and

We next estimated the frequency of duplication  x, is the duplicated residue), and (B) duplication
of peptide segment which can balance out the  accompanied by replacement of neighbor resi-
“negative effect” of point mutations. Table 1 due(s) represented by x;, X,, X, X4, OF Xy, X5, X3, Xy,
shows, to maintain the repetitiveness seen in the  generated from x;, x,, x5, x,. The results shown in
neural system proteins, 1.7 x 10° events of dupli-  Table 1 are based on type (A). When we assumed
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Figure 7. Simulation of repetitiveness using amino acid sequences. (a) Repetitiveness of the artificial sequences
before (broken line) and after (continuous line) the simulation of repetitiveness mimicking the repetitiveness of neural
proteins. Repetitiveness was introduced by the duplication method (see Methods and Algorithms). The number of
duplication events needed (per 2.5 x 10° original residues) are partly shown below in the parenthesis following the
number indicating segment length of duplication; 1 (6077); 2 (3282); 3 (2294); 4 (1673); 5 (1419); 10 (596); 20 (218); 30
(131); 40 (96); 50 (71); and 100 (32). (b) Combined repetitiveness profile of the artificial sequences before and after
mimicking the immune system proteins. The number of duplication needed was: 1 (4961); 2 (2716); 3 (1487);,4 (1206);
5 (879); 10 (329); 20 (124); 30 (80); 40 (49); 50 (34); and 100 (15). (c) Effect of point mutations on the repetitiveness of
artificial sequence mimicking that of neural proteins. Indicated numbers of mutations were introduced to the
sequence, whose repetitiveness profile was shown as the top curve with open circles.

that all the duplication occurs like type (B), then
1.2 x 10° and 1.7 x 10° events were estimated for
neural and immune proteins, respectively. In both
cases, the frequency of estimated duplication
appears substantially high (1.2 ~2.4 events per
1000 residues), given that one PAM indicates ten
substitutive mutation events for segment of the
same length. These results also show that dupli-
cations must occur more frequently on a very local
scale like ~20 bp rather than 100 ~ 300 bp.

It should be noted that we introduced several
assumptions in this simulation using amino acid
sequences. First, we assumed that tandem gene
duplication is the sole mechanism for the enhance-
ment of repetitiveness, disregarding other factors
such as a local bias in point mutation probability.
Second, we did not simulate the deletion and ran-
dom insertion of the segments. Therefore, our
duplication should be regarded as the “net” dupli-
cation, by which all the mutations (including del-
etion and random insertion) were taken into
account. Third, we assumed that the overall repeti-
tiveness is constant for an evolutionary period of
at least ~20 PAM. Notwithstanding these assump-
tions, we believe that the figures are useful as an
initial step for understanding the general feature of
evolutionary dynamics of protein sequences.

Simulation using DNA sequences

The simulations presented above were concerned
with amino acid level analyses. To estimate the
effect of DNA mutation and to infer their relative
strength, we also performed simulation by which
DNA sequences were directly manipulated. First,
the real cDNA sequences were modified by substi-
tutive mutations according to the near-neutral
mutation rates obtained by Li et al. (1984) using
pseudogenes: this procedure mimics the evolution
without any selection pressure. The substitutive
mutations (of 20 % of the amino acids and 10 % of
the nucleotides) under this condition resulted in
quick mitigation of repetitiveness in both protein
(Figure 8(a), left) and DNA sequences (right).

Next, more realistic conditions were examined,
where mutations were partially “accepted” such
that the resultant amino acid substitutions become
similar to the Dayhoff matrix with the procedure
described in Methods and Algorithm. Under the
condition in which 20 PAM amino acid substi-
tutions (which changes 17% of the nucleotides)
were introduced, the repetitiveness in DNA
sequences was weakened (Figure 8(b)). The cryptic
repetitiveness in DNA sequences was also miti-
gated. We believe that the extent of mutations
introduced here has biological relevance because
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Table 1. Estimated frequency of duplication which
balances with point mutation

Neural proteins
(times per 10°

Immune proteins
(times per 10°

Segment length residues) residues)
1 residue 377.6 6.4 620.0 = 8.4
2 201.3 +£3.5 3472+72
3 139.8 £2.4 181.5+£29
4 111.0 £3.1 1554 £2.7
5 89.1+24 114.6 £3.0
10 376+1.6 522+13
20 182 +£2.0 101£17
30 107 £ 14 69+12
40 56+15 54+13
50 43408 43409
Total of 51, 52...100 137.6 £3.8 111.8 £3.0
Total (for 1,...,100

residues) 1.7 x 10° 24 x 10°

For each of the neural and immune protein sets, the average
of five experiments is shown with S.D.

evolution of neural and immune proteins are fairly
rapid: even for the homologous subsegments (that
are the segments found with BLAST), only ~44 %
amino acid residues (mean) were identical between
Drosophila melanogaster and human (our unpub-
lished result). (Notably, both D. melanogaster and
C. elegans homologues have comparable degree of
repetitiveness with human homologues.)

Finally the evolution under the stronger con-
straints was mimicked, where DNA mutations
were accepted only when the mutations were
“synonymous” (thus not leading to amino acid
alteration), with 10% of the nucleotides being
changed. Even under this condition, the mitigating
effect on repetitiveness was clear (Figure 8(c)).
Taken together, biological levels of substitutive
DNA mutations are likely to lead to the fairly
rapid reduction in the repetitiveness in both DNA
and protein sequences.

We also examined insertions and deletions
(indels) using the frequency in pseudogenes as pre-
viously described (Ophir & Graur, 1997). However,
indels which cause frameshift seem negligible for
our purpose, because the frequency of insertions
(respectively deletions) is equivalent to only 1%
(respectively 2.5%) of that of substitutions (Ophir
& Graur, 1997) and, moreover, indels appear to be
very rarely accepted in human and rodents coding
DNA sequences (Ophir & Graur, 1997; Gu & Li,
1995). Therefore, in the current study, we focused
only on the indels of 3n (multiples of three) nucleo-
tide long segments. Even under the condition
where all the indels (with random component)
were introduced at the near-neutral rate, indels of
3n nucleotide long segments did not effectively
mitigate the repetitiveness of amino acid and DNA
sequences: when five events of 3n indels per 1 kb
sequences (at a typical probability distribution
over different scales), which would occur during
the period equivalent to the substitutive mutations
of ~10% nucleotides (assuming the neutral fre-
quency), were introduced, then only a slight

decrease (<0.3%) in DNA repetitiveness was
observed (our unpublished observation). Thus, the
random indels at biological levels are not likely to
have considerable effects on repetitiveness in
sequences.

From the above analyses, it seemed likely that
longitudinal duplications of DNA segment could
generally have positive effects on the repetitive-
ness. To our knowledge, however, there has been
no detailed analysis of the neutral frequency of
duplications. Therefore, we implemented the sys-
tem by which various rates of (both neighbor-
replacing and elongating) duplications can be
examined independently: we assumed, for
example, that in the sequence GGAATTCC, the
neighbor-replacing duplication of AT generates
GATATTCC or GGAATATC with an equal prob-
ability, while the elongating one results in GGAA-
TATTCC. Regarding the elongating type,
duplications of segments of non-3n lengths, which
cause frameshift, are not likely to occur at a signifi-
cant level for the proteins concerned (due to the
same reason as considered in insertions and del-
etions). Thus, we simulated only the neighbor-
replacing duplications and those elongating dupli-
cations of the 3n length segments. Regarding the
neighbor-replacing type, we further discriminate
the in-frame and out-of-frame type of neighbor-
replacing duplications: for example, in a 12 nt
sequence GAT CTT AGA GCA (encoding DLRA),
the neighbor-replacing duplication of TTA results
in GAT CIT ATT ACA or GIT ATT AGA GCA,
changing two of the encoded amino acids
(DLRA — DLIT or VIRA). Although this does not
cause the frameshift downstream of this segment,
we define that the TTA is not in-frame, but out-of-
frame. (Note that the (neighbor-replacing) dupli-
cations of segments of non-3n nucleotide lengths
always generate a new codon in the proximity, so
can be regarded as out-of-frame type.)

Starting from the real protein and cDNA
sequences, we introduced the substitutive
mutations (resulting in 20 PAM amino acid substi-
tutions) and obtained sequences with mitigated
repetitiveness (as shown with filled circles in
Figure 9(a)). We tried to find the type(s) of dupli-
cations which can bring the repetitiveness profiles
back to the original level. When only the 3#n, in-
frame type was allowed, it rapidly augmented the
repetitiveness in the amino acid and (rather slowly)
that of DNA sequences at 3n intervals, but it did
not considerably changed the cryptic DNA repeti-
tiveness (Figure 9(a)). When the 37, in-frame type
duplications mixed with far less frequent non-3n
and 3n, out-of-frame types duplications were intro-
duced, the cryptic repetitiveness was slightly aug-
mented (Figure 9(b)). When non-3n type and 3n,
out-of-frame type duplications were introduced at
a similar frequency to that of 3n, in-frame, they
rather mitigated the amino acid and DNA repeti-
tiveness at 3n intervals, while they augmented the
cryptic repetitiveness (data not shown). These data
suggest that 371, in-frame type duplication is a
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Figure 8. Simulation of substitutive mutations and effect of duplications using DNA sequences. (a) Repetitiveness
profile in protein (left) and cDNA sequences (right) for the modern proteins after introducing virtual substitutions
under the near-neutral condition, which changed 20% of the amino acids and 10% of the nucleotides. Profiles are
shown as in Figure 2. (b) Profiles of DNA similar to (a), but after the DNA substitutions (17 %) which result in
20PAM mutations were introduced as described in the text. (c) Repetitiveness in DNA similar to (a), but after synon-
ymous substitutions were introduced until 10 % of the nucleotides were changed.

major factor for maintaining the amino acid and
DNA repetitiveness, while non-3n and 3n, out-of-
frame types are also necessary for maintaining the
cryptic repetitiveness. We also examined the
elongating type duplications, but there was no con-
siderable level of effect on repetitiveness even
under the assumption that their frequency is equal
to that of insertions measured in pseudogenes
(data not shown).

At present, we still cannot find the condition
which coordinately augments the repetitiveness in
both the amino acid and DNA (at both 3n and
non-3n intervals) toward the realistic levels within
a biologically relevant number of events. The pri-
mary difficulty lies in augmenting the DNA repeti-
tiveness at 3n intervals, although it is quite easy to
augment amino acid repetitiveness (Figure 9 and
data not shown). Although we cannot rule out the
possibility that more extensive search could allow
us to find an appropriate condition, we would
rather surmise that this difficulty could be due to

those factors which we did not consider in our sys-
tem: nucleotide substiutions in real coding
sequences should be influenced (or constrained) by
the codon frequency, nucleotide compositions at
the third position of codons and dinucleotide fre-
quency. Such aspects seem related to the within
gene correlation as shown by the downward shift
of the profile by the between gene codon shuffling
(Figure 6(b)). In any event, the real genes appear to
be enhancing the intermediate scale repetitiveness
in DNA “without” fully enhancing that of amino
acid sequences.

Although it might thus not be easy to perform a
quantitative study regarding the relative frequency
of the 3n (mainly in-frame) versus non-3n dupli-
cations, these data imply that DNA duplications,
in general, can augment the local repetitiveness in
amino acid and DNA sequences. It is also
suggested that 37, in-frame type is a major factor,
but also non-3n and 3n, out-of-frame types
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Figure 9. (a) Effect of the neigh-
bor-replacing duplications of the 3n

1.3

normalized frequency
-
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score
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0.1

type on the repetitiveness in amino
acid (left) and DNA sequences
(right). Filled circles shows the
repetitiveness profile of the amino
acid and cDNA sequences (of the
neural + immune set) whose repeti-
tiveness was mitigated (with the
method as used in Figure 8(b)).
Open circles in both graphs indi-
cate the profile after duplications of
the 3n type were introduced to the
sequences shown with the filled cir-
cles. The number of duplication
events introduced (per 3.5 x 10°
nucleotides) are partly shown
below in the parenthesis following
the number indicating segment
length of duplication; 3 (520); 6
(269); 9 (190); 12 (135); 15 (109); 21
(82); 30 (60); 60 (19); 120 (12); and

1.0 [ U S S S U S S }
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nucleotide interval

56 100 150 260 250 300 300 (0). (b) Effect of the 3n, in-

frame type mixed with less fre-
quent non-3n and 3n, out-of-frame

type duplications. Their relative frequencies are 10:1:1. The results are shown as in (a). The number of duplication
events introduced (per 3.5 x 10° nucleotides) are, partly; 3 (688); 6 (396); 9 (288); 12 (198); 15 (187); 21 (90); 30 (68); 60

(35); 120 (14); and 300 (0).

are likely to be involved in maintaining the DNA
repetitiveness.

Simulation of the effect of repetitiveness on
properties of peptides

What is the biological or evolutionary relevance
of the tendency for repetitiveness? It seems concei-
vable that such local dynamics could affect the
variation in encoded peptide. Thus, it seems
worthwhile to test how much effect such repeti-
tiveness has on the local physicochemical nature of
the local peptide. As an initial step, we examined
the distribution of the pl of the 21-residue subseg-
ments (Table 2). Notably, the occurrence of seg-
ments with extremely high (or low) pl is more
frequent in the sequences with the realistic repeti-
tiveness than in the randomly generated (but with
identical composition) sequences. Estimation of the
hydrophobicity using the procedure described by
White (1994) suggested that, in terms of hydropho-
bicity as well, the repetitiveness enhances the
regional diversity of the peptide segment (data not
shown).

Some peptide motifs which have clusters of
charged residues have been reported. We collected
many motifs from PROSITE databases and the lit-
erature which employ at least one charged residue
and tested their occurrence in the artificially gener-
ated sequences with and without the procedure
mimicking the repetitiveness. As expected, the gen-
eral trend is that the more identically charged resi-
dues the motif contains, the more frequent is the
occurrence of the motif in the sequences with repe-
titiveness, as compared with the random sequences

(Table 3). In fact, all the motifs whose occurrence
have difference (>1.5-fold, marked with P(see
Table 3)) between rep™ and rep~ sequences contain
two or more identically charged amino acid
(Table 3 and data not shown).

Our results suggest that compared with the
sequences modified with only substitutive
mutation, those modified by both substitution and
duplication have higher likelihood to generate the
segment of clustering similarly charged residues. It
seems reasonable to surmise that duplication rate
is also subject to adaptive evolution for the sake of
the whole system’s survival. While the intermedi-
ate and long-scale genetic rearrangements are
believed to be important for evolution and help
the generation of new combinations (shuffling)
(Patthy, 1991; Iwabe et al., 1996), local repetitive-
ness that we focus on may be convenient for gener-
ating a short motif consisting of similar residues. It
may be helpful to imagine a situation where, for
example, an occurrence of an SH3 ligand motif
PPxP between pre-existing SH2 and SH3 domains
would be helpful for better cellular function. In
such a case, it may be easier to create a PPXP
sequence by local scale duplication of the codons
for P rather than “copy (or cut) and paste” PPxP
from other genes without disrupting the SH2 and
SH3. Many eukaryote motifs consist of the repeti-
tive use of identical amino acid residues. It seems
intriguing that such tendency is enhancing or regu-
lating the chance of the occurrence of such motifs
and thus, controlling the overall degree and
frequency of protein-protein interactions, in
eukaryotic cell.
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Table 2. Number of 21-residue windows containing the peptide segment with indicated pl as estimated.

Number of windows?

pl of 21 residues Neuro-rep™ Neuro-rep~ Immune-rep* Immune-rep™
0.0-2.0 0 0 0 0
2.0-3.0 169 31 127 35
3.0-4.0 7980 6262 6554 5066
4.0-6.0 11,744 12,754 10,683 10,898
6.0-8.0 8042 8730 8059 8690
8.0-10.0 8751 9567 9954 11,064
10.0-11.0 8145 8175 8366 8586
11.0-12.0 3212 2894 3527 3608
12.0-13.0 1862 1577 2665 2045
13.0- 95 10 65 8

2 A total of 50,000 independent 21-residue-long subsegments were analyzed for rep* and rep~ generated sequences.

Based on the presented results, we surmise that  of physicochemical characteristics) may be ben-
the propensity of genome for repetitiveness tend to  eficial to modern proteins. In this context, it still
be clear in modern genes basically due to “weak  seems possible as well that local duplications of
constraints” on their product proteins. However, = DNA (resulting in repetitive use of identical amino
we cannot formally rule out the possibility that acids) may have been employed to achieve such
modern proteins “favor” the repetitive use of  clustering of similar amino acids, just because this

amino acids and that the tendency for repetitive-  is a rapid way. In other words, the recurrence of

ness of DNA is just “employed” to help the fitting  identical amino acids may be the byproducts

process of such proteins. produced during the evolution toward clustering
In general, it is often not straightforward to dis-  of similar amino acids.

criminate positive selection from neutral drift. In In the field of genetics, increasing number of stu-

our view, the possibility of positive selection of  dies are dealing with ““microsatellite’” structure,
repetitive use of “identical” amino acids per se = where the three to six nucleotides sequence motif
seems less plausible, because the BLAST-based  expands rapidly, resulting in polymorphism. It
classification generally show that those segments  seems possible that our findings are related to this
with high homology (even between human and  phenomenon, and their basal origin could be the
rodent) tend to show weak repetitiveness (K.N.,  same. To build a basis for the approach toward
unpublished results). Yet, it still seems possible  such a question, more detailed analyses on funda-
that the clustering of similar amino acids (in terms  mental parameters in genomic kinetics through

Table 3. The occurrence of motifs containing charged amino acid(s)

Rep™ Rep*
Motif (each a.a.) (average profile) Rep™ Reference
Heparin binding x-[RK]-[RK]-[RK]-x(2)-[RK]-x 14,749 10,647° 5138 Fowlkes et al. (1997)
G-protein activating [RKJ-[RK]-x(1,2)-[RK] 181,317° 146,418 100,035 Okamoto & Nishimoto
(1992)
Ubiquitous protease recognition site R-x-[KR]-R 29,983P 16,758 12,680 Nagahama et al. (1991)
Phospholipase C beta 1 activating [RK]-x-[RK]- 87,004° 73,218 50,108 Piiper et al. (1997)
x(3)-[RK]
cAMP/cGMP prot. kinase phosphor. site [RK](2)- 94,552 78,471 73,812 PDOC00004*
x-[ST]
Amidation site x-G-[RK]-[RK] 44,946 41,884 34,351 PDOC00009
N-myristoylation site G-{EDRKHPFYW}-x(2)- 672,164 616,929 587,163 PDOC00008
[STAGCN]-{P}
ATP/GTP binding site motif A [AG]-x(4)-G-K-[ST] 3796 4049 3363 PDOC00017
N-glycosylation site N-{P}-[ST]-{P} 265,388 213,253 237,273 PDOC00001
Protein kinase C phosphorylation site [ST]-x-[RK] 782,888 662,283 725,937 PDOC00005
Casein kinasell phosphorylation site [ST]-x(2)-[DE] 1368 886 1048 PDOC00006
Tyr kinase [RK]-x(2,3)-[DE]-x(2,3)-Y 32,766 28,572 31,336 PDOC00007
Protease recognition site 2 R-x(2)-R 188,345 119,669 118,676 Molloy et al. (1992)
CDK2 cycline motif P-x-T-P-x-[RK] 2336 1493 1633 Higashi et al. (1995)
Hi(histone)1 H2b phosphorylation S-P-x-[RK] 29,993 25,138 31,649 Hill et al. (1990)
Guanine ring binding site N-K-x-D 4622 4957 4334 Zhong et al. (1995)
Sugar transporter motif K-x(2)-H-x(2)-D 2756 3282 2603 Poolman et al. (1995)
Neurofilament mutiphospho 1 K-5-P-x(2) 15,030 14,152 16,017 Bajaj & Miller (1997)
Sites by AMP-PK (total) [MVLI]-(R/K/H/x,x,)-x- 148,394 121,261 139,279 Weekes et al. (1993)
[ST]-x(3)-[MVLI]
Phophate transport P-x-[DE]-x(2)-[RK]-x-[RK] 4469 3975 4242 Guerin et al. (1990)

2 PROSITE entry number is shown.
® Indicates the difference greater than 1.5 fold as compared with rep~.
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homology and repetitiveness analyses seem to be
necessary. As discussed above, it seems even poss-
ible that a significant part of “apparently substitu-
tive”” mutations may be cryptic neighbor-replacing
duplications. It is hoped that our simple methods
will be extended to more detailed investigation, for
example, of homologous segments and pseudo-
genes of various organisms and eventually help
the understanding of evolutionary changes in
genes and proteins.

Methods and Algorithms

All the computer program source codes written in
ANSI C-language used in this study are available from
the authors upon request.

Analysis of correlation in amino acid occurrence

We define Fy(%) as the frequency of amino acid X
over all the proteins in a given set. Our first goal is to
calculate the frequency (%) of amino acid Y at a given
distance i from amino acid X, which we refer to as Fyx(i).
Although the formal definition is given below, a simple
example may help the understanding. Consider a 20 resi-
due sequence MRKRTHSAVKNPTKCYRKSA (the single
letter code is used). This sequence has two T (threonine)
residues. Thus, Fr = 100(2/20 = 10 %. If we consider the
+2 position from every K (lysine) residue, i.e. are the
positions shown with italics in MRKRTHSAVKNPTK-
CYRKSA, we find T, P, Y and A. Thus, the frequency of
T at +2 position from K, namely Fr(2), is 100(1/
4) = 25 %. Please also note that this sample sequence has
only three +3 positions from the K residues because the
K residue that is the closest to the C terminus has only
two downstream neighboring residues.

Let us assume that the concerned protein set consists
of N sequences and that the kth protein contains L, resi-
dues. Let S; , represent the nth residue of the kth protein.

For brevity, we represent the total number of X resi-
dues over the protein sets as M(X). Thus:

N L

MX) =Y

Ck,n(X)
k=1 n=1

where C; ,(X) is a “counting function” regarding X,
therefore:

1 if

Sk is X,
Ck‘n(X) — { 0 k.n 1S

if Sy, is not X.

Then:

N
Fx = 1OOM(X)/{ZLk}

k=1

Similarly, when we have many sequences, Fyx(i) is cal-
culated cumulatively over all of the M(X) X residues (or
actually their neighbor residues). We assign a number p
(p=1,..., M(X)) to each of these X residues, and if the
pth X residue belongs to the k(p)th protein and corre-
sponds to the n(p)th residue, our interest is in the residue
at (n(p) + 1) th position of the k(p)th protein. In other
words, we are interested in Sy, + - Hence:

Fyx(i) = {number of Y residues at the 7 position from
each of the X residues}/{total number of residues
at th i position from each of the X residues}

M(X) M(X)
=100 Z Crpy.ngpy+i(Y) / Z Z Crpynip)+i(2)
p=1 zZ p=1
where Z = either of 20 amino acid types and:

Ck(p),n(p)+i(z)

1 if
0 if

Skp)np)+i 18 Z
{n(p) + 1} > Li)
or<0 (i.e. no such position!),

or if Syp) ng)+i is not Z

In the denominator, X, indicates summing over 20
amino acid types.

Note that in both numerator and denominator, the
position, which is the i residue apart from each X resi-
due, is considered only when such a position really
exists (i.e. 1 < {n(p) +i} < Ly,)). Therefore, when |i| is
large (~100), profile Fyy(i) tends to be obtained from
fewer data samples than in the case with small [i].

Because Fyx(i) gives the frequency (% among the 20
amino acid types) of Y, at position i, it is convenient to
compare it with Fy, the overall Y frequency of occurrence
in the protein set. Thus, we use {Fyx(i)/Fy} as the nor-
malized frequency of Y at position i of X. For example, if
F,, the frequency of alanine, is 8 % and if F5q(2), the fre-
quency of alanine at +2 position from each glutamine
residue, is 10 %, the normalized frequency of alanine at
the positions is 10/8 = 1.25, meaning 25 % higher than
the average frequency of alanine.

In this study, we were mainly concerned with Fyy(i),
which is just the special case of Fyx(i) , where X =Y.
Thus:

Fxx(i) = {number of X residues at the i position from
each of the X residues}//{total number of residues
at the i position from each of the X residues}

M(X) M(X)
=100{ > Cigppugp+i(X) / DD Cuppyi(2)

p=1 zZ p=1

Note that Fxx(i) is obtained with the same denominator
as the one used for Fyx(i), and therefore, indicates the
contribution (% among 20 amino acids) of X at position
i

In this study, we define the normalized repetitiveness
profile of amino acid X as:

(Fxx(i)/Fx)

This profile needs to be determined for each amino
acid type. For convenience, we also used the combined
profile, for which profiles of individual amino acids
were averaged using the formula:

(1/100) (Z Fxx(i)>
X
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where ¥y indicates the sum over the 20 amino acid resi-
dues.

Note that this formula equals to Xy[(Fxx(i)/
Fy)(0.01Fy)], which indicates the normalized profiles
(Fxx(i)/Fy) for each amino acid are summed after being
weighted by the overall frequency (0.01Fy).

Analysis of repetitiveness in DNA sequences

Local repetitiveness in DNA sequences was analyzed
with a procedure similar to the one used for amino acid
sequences. We first measured the repetitiveness of DNA
dinucleotide by comparing them with the neighbor dinu-
cleotides. (Trinucletide or longer segments can also be
used with the same scoring.) To score the similarity
between two segments, each position was individually
examined and given three points for an identical and —1
for different alignment: for example, the repetitiveness of
the dinucleotide AG at a distance of i nt was scored as 6
if AG is found at the position i, while it was scored as 2
(=34 (—1)) against AX (Xis A, Cor T) or YG (Y =G, C
or T), and as —2 if neither position had identity. Note
that such details of scoring methods are trivial and do
not affect the mathematical tractability (Karlin &
Altschul, 1990). Next, we cumulatively calculated the
average score with respect to individual dinucleotide
and position, thus obtaining the profile. For the simpli-
city in presentation, we combined the profiles for the
individual dinucleotide types after weighting the profiles
by the frequency of each dinucleotide. (The same pro-
cedure was used for Xy Fxy(i) in amino acids analyses.)

Simulation of amino acid sequence by
repetitiveness generation and substitutive mutations

Artificial random protein sequences, whose compo-
sition of each type of amino acid is identical to that of
real proteins of a given set, are generated with the use of
a random number generator. For convenience, the
lengths of the real proteins were not mimicked: typically,
5 x 10° residue long original sequences were modified.
The generated sequences, or original sequences, are natu-
rally without any significant level of repetitiveness
(Figure 7(a) and (b)). These sequences were modified
such that their repetitiveness was progressively augmen-
ted toward the level of the repetitiveness of real
sequences. Both of the following methods were tested.
(i) Insertion method: Of the 20 amino acid types, one
type to be inserted is chosen for each cycle of procedure
such that the relative abundance of each type of amino
acid is largely constant. For example, if glutamine (Q)
was chosen, the repetitiveness profile of Q was calcu-
lated and compared with the target repetitiveness profile
obtained from real protein data. If, compared with the
target profile, the repetitiveness profile of the simulated
sequences shows the greatest discrepancy at the +3
(three residues downstream) position from the alanine
residues, then one additional Q is inserted at the +3 pos-
ition from an arbitrary Q, thereby doing feedback. These
procedures are iterated for all amino acid types using
the appropriate proportion, such that the relative abun-
dance of each type of amino acid is unchanged. How-
ever, the insertion method did not produce sufficient
repetitiveness such as the one seen in modern proteins.

In fact, all of our trials (ten times) produced insufficient
levels of repetitiveness (~1.15 in terms of (1/100)
(Ex Fxx(i))) even after the extensive iterations of inser-
tions, which lead to the elongation of the sequences by
fivefold. Only when amino acid X was inserted into the
“X-rich peptide region”, was sufficient repetitiveness
obtained.

(ii) Duplication method: One amino acid type is cho-
sen, and its repetitiveness is compared with the real pro-
tein profile in a similar manner as in the insertion
method. If the repetitiveness of Q needs to be augmented
at the +3 position, one Q is arbitrarily chosen and one of
the three residue segments containing the Q is dupli-
cated. For example, if Q in the segment “x;, x,, x5, x4, Q,
Y Yo, Ya, Ya'" (Where x;, Yj (i, j=1, 2, 3, 4) are any type
of amino acid) is chosen to be duplicated, one of the seg-
ments “x3, x4, Q,, “xy, Q, yy o1 “Q, ¥y, ¥,”, is randomly
chosen and duplicated. All the duplication events per-
formed during one simulation experiment were recorded
for analysis. With the method (ii), procedures were iter-
ated until the difference (between real and artificial pro-
teins) in profile [(1/100)(Xx Fxx(i))] became sufficiently
small. That is:

100 172
(1/100)8 > T(ExFsinxx(D) — (ExFreancx(d)

i=1

< 0.001

where F_;,xx(i) and F,.,;xx(i) denote the Fy(i) of artificial
and real sequences, respectively. Note that with both
methods (i) and (ii), the procedure to enhance the repeti-
tiveness of Q tends to reduce the repetitiveness of the
other types. Of note, since the (i) insertion method did
not produce equivalent level of repetitiveness, we mainly
used the (ii) as will be shown in the text.

Simulation of point mutations was performed by
introducing point mutations into original sequences
according to mutation probability scores obtained from
the data of accepted point mutation (PAM). (Figure 8 by
Dayhoff et al., 1978). For point mutations for a longer
time period, the score for 1 PAM was used in a iterative
manner as described by Dayhoff et al. (1978). Every pos-
ition of the sequence was equally subjected to the
mutation probability score matrix.

Random point mutation should naturally tend to miti-
gate the repetitiveness of the sequence, as long as each
point mutation event occurs independently from another
event. If an appropriate frequency of duplication is intro-
duced, the mitigating effect of point mutation on repeti-
tiveness can be canceled out. Hence, the frequency of the
duplication events that maintain the repetitiveness in the
presence of substitutive point mutation can be inferred,
by modifying the real human protein sequences as fol-
lows: Let P(I) denote the frequency of duplication of the |
residue segment per 10° residues during the period of 1
PAM. After each mutational procedure using the matrix
for 1 PAM as previously mentioned, duplication is
performed according to P(I). Segments to be duplicated
are randomly chosen. Our goal is to find the P(l) that
minimized the change in the repetitiveness profile pro-
duced by n iterations of the point mutation and dupli-
cation procedure (or “m-d loops”).

Let [Zyx Fxx()], indicate the repetitiveness profile
(averaged over all amino acid types) after n rounds of
m-d loops. We used the following function D, to denote
the difference between the profiles obtained before and
after the n m-d loops:
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Dy(P) = {Zi([SxFxx(]o — [ExFxx(i)],)*}?

In this study, we set n =20. Our goal is to minimize
D, (P) by seeking the appropriate P(I). Because every trial
failed with P(I) greater than 10,000, 1 < P(I) < 10,000 was
tested. After testing 10,000 different P(I) randomly
defined, the best one was selected and subjected to a
simulated annealing procedure (Miiller ef al., 1995) for
further improvement. In brief, an elementary move from
P(l) to P'(I) was chosen at random, and the correspond-
ing change in D,(P), ie. AD,=D,P)—-D,(P), was
calculated. Depending on the sign and magnitude of
AD,, the move was accepted with a probability:

1 for
exp(—AD,/T) for

/ ADn <0
Prb(P—)P)_{ AD, > 0
where T is the so-called temperature factor, which con-
trols the efficacy of the minimization process. When T is
high (large), the probability that D, (P) increases (i.e. tem-
porarily gets worse) is high. When T is small, the move-
ment of D, (P) is stable but is more likely to be trapped
in a local minimum. In this study, as T, we used the
minimum value of D, (P) that we reached until the time
point. To improve the probability of finding the global
optimum, the whole procedure was repeated ten times
using new 10,000 sets. The procedure to keep the amino
acid composition stable was employed as described in
(ii) above.

Simulation using DNA sequences

We generated a simulation system where DNA
sequences evolve under the influence both of the near-
neutral substitution frequency (see below) and the vir-
tual constraints on product protein. First, candidates of
substitution were raised according to the frequency of
substitution observed in pseudogenes (Li et al., 1984) at
positions randomly chosen. Such candidates were
accepted only when they satisfied the conditions speci-
fied by user.

Here, three biologically important conditions were
tested: (i) The condition in which all the candidates of
substitutive mutation are always accepted without any
discrimination. (ii) The condition that partially accepts
the candidates such that alterations of encoded protein
sequences mimic the Dayhoff matrix. Here, candidates
(of DNA substitution) were recorded in the buffer and
accepted only when their acceptance would either not
change the amino acid sequences or bring the cumulative
statistics (regarding the balance among different patterns
of amino acid substitutions) closer to 1 PAM Dayhoff
matrix. By this procedure, ~95% of 1 PAM mutations
were carried out. Because some patterns of (amino acid)
substitutions require two or three nucleotides to be chan-
ged in a codon and thus are not realized with this meth-
od, a complementary step for such substitutions (~5 % of
all the mutations equivalent to 1 PAM) were artificially
performed to realize 1 PAM mutations. To mimic further
evolutionary changes (such as 100 PAM), the procedure
for 1 PAM was appropriately iterated. In both methods
(i) and (ii), those substitutions which cause premature
terminations were not accepted, because, for the protein
species used, homology analyses over vertebrates
suggested such cases are too rare to effect the overall
repetitiveness (Nishizawa, unpublished result). (iii) The
condition where the candidates are accepted only if they
would lead to synonymous change (not leading to

amino acid mutation). This condition corresponds to
stringent constraints on the encoded proteins. Our sys-
tem allows us to “blend” the procedure (ii) and (iii) and
thus mimic various rates of evolution (and thus virtual
constraints), although we did not extensively exploit this
potential in this study.

One important factor that our current system does not
take into account is positional bias in mutation rates: for
each type of nucleotide, all the positions are equally sub-
jected to near-neutral substitution events in our system.

Insertions and deletions mutations were also
implemented according to the characteristics as pre-
viously measured (Ophir & Graur, 1997). As in the case
of substitutive mutations, the candidates raised at near-
neutral rate were partially accepted with the filter con-
trollable by the user. Insertions and deletions causing
premature terminations were not accepted in this study
because of their rare occurrence in the real proteins and
thus their weak effect on the overall repetitiveness. Our
system also allows us to differentiate the parameters for
the insertions and deletions depending on whether the
mutation causes frameshift or not. We also implemented
simulation of duplication mutations. Both types of dupli-
cation (the neighbor-replacing type and the elongating
type) were independently considered. Estimation of fre-
quency of duplications was performed in a similar man-
ner to that used for the amino acid sequence analyses.

Estimation of pl of protein segments

The physicochemical nature of the protein segments
was analysed with respect to hydrophobicity and the
isoelectric point (plI). For, the pI of the segments, [H]
which brings the total charge of the protein to zero was
determined in the equation:

Z = —%{a; * Ki/(H] + K;)}
+ (b + [HI/(H] + K}

where Z denotes the total charge of the protein, K; is K,
(that is drawn from the pKa value shown below) of
negatively charged amino acids, 4; is the number of such
residues, K; is K, of positively charged amino acids and
b, is the number of such residues (Manabe, 1990;
Bjellqvist et al., 1994). ¥; and ¥; indicate that the sum-
ming is performed over all the negatively (i) and posi-
tively (j) charged amino acid types shown below. For
the calculations of K; and K the following values of pK,,
obtained for the side-chains of free amino acids were
used: COOH group of the C terminus, 2.30; NH, group
of the N terminus, 9.60; COOH group of Asp, 3.86; that
of Glu, 4.25; OH group of Tyr, 10.07; imidazole group of
His, 6.0; e-NH, group of Lys, 10.53; Guanidil group of
Arg, 12.48 and SH group Cys, 8.33. Typically, the sub-
segments within the window with the width of 21 resi-
dues were analyzed taking into account the N and C
termini of the subsegments.

Effect of repetitiveness on the occurrence of
peptide motifs

Artificial sequences generated with procedures enhan-
cing repetitiveness (rep*) and without such procedures
(rep™) were screened with respect to the motifs collected
in PROSITE (Bairoch et al., 1997). Because many PRO-
SITE motifs very rarely occur, we first tested all the
motifs against both rep~ and rept sequences (2.5 x 10°
residues for each), and those 95 motifs which appeared
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at least once were chosen for the measurement on the
5 x 107 residues tested. In addition, we collected from
the literature several motifs, because PROSITE does not
contain all the motifs published, probably because defini-
tive formalization of the consensus pattern is difficult
especially when the number of examples are limited.
Medline was screened with the query words “motif”,
“basic (or acidic)”” and “residue (or amino acid)”, and 92
papers whose summary includes motifs were collected.
We then collected all of those motifs which are shorter
than 10 residues and contain at least one residue (that is,
R, K, [R or K], D, E, or [D or E]), Due to our interest in
charged motifs in the present study. Because of redun-
dancy, only 23 independent motifs were obtained.

Protein and DNA sequence files and classification
analysis of repetitiveness

For humans, all human files in the SwissProt version
34 were compiled, and genes for HLA proteins, immuno-
globulins, T cell receptors and other highly similar
sequences were culled with the aid of the BLASTP algor-
ithm (Altschul ef al., 1990) to remove redundancies, thus
producing 3769 proteins (1.74 x 10° residues).

Ancient, neural-system-specific and immune-system-
specific proteins were compiled from SwissProt/PIR.
Using the appropriate keywords (“neuron”, “neural”,
“nerve’”’, “brain” for neuro-specific proteins and
“lymphocyte”, “T-cell”, “B-cell”, “immunoglobulin”,
“immune”, and “immuno” for immune-system-specific
proteins), relevant files were chosen. For ancient pro-
teins, all the files for which the E. coli homologues are
known (with BLAST score (e-value) < e — 50) were com-
piled. The BLASTP algorithm was used (under the stan-
dard settings without filtering the monotonous
sequences) for eliminating pairs of proteins mutually
related to the degree of >25% identity over any of
200-residue segments. Even if the identity was <25 % for
any 200-residue segment, some proteins were discarded
to avoid compilation of many entries from the same
family. (e.g. T-cell receptors, HLA) The files of each
category are shown in Supplementary Material.

For the analysis of those human proteins for which
the yeast (S. cerevisiae) but not E. coli homologues are
known (Figure 5), all the yeast protein files of SwissProt
were searched, in the alphabetical order, using the stan-
dard BLASTP against SwissProt 4+ PIR + translated Gen-
Bank sequences and against the E. coli subgroup. Those
yeast files for which the human homologues are given in
the search (with the BLAST score smaller than e — 30)
were compiled and, to further select the files whose the
E. coli homologues are not known (or BLAST score
>e — 10), were subsequently tested against the E.coli pro-
teins . The first two hundreds human files collected in
this manner were used in the analysis shown in Figure 5.
(see the Supplementary Material.)

The cDNA sequences were collected with the aid of
SwissProt Web site (http://www. expasy.ch/cgi-bin/
sprot-search-ful) and, when necessary, tblastn (of
BLAST, at http://www. ncbinlm.nih.gov).
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